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The use of polynomial functionals for describing two-body interactions in com-
putational chemistry softwares has been surveyed and found to be prevalent. In this
paper, Binomial and Maclaurin series expansions are used for expressing typical in-
teratomic potential functions – such as Lennard-Jones, Morse, Rydberg and Bucking-
ham potential – in a generic polynomial function, with the coefficients presented in a
tabular format. Theoretical plots of these potential functions and their corresponding
polynomial forms show increasing correlation with the order of polynomial, thereby
validating the obtained polynomial’s coefficients. Conversely, a polynomial functional
obtained by curve-fitting of experimental data can be converted into Morse, Rydberg
and Buckingham potentials by using the generated table.
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1. Introduction

With the establishment of empirical interatomic potential functions [1–6],
mathematical chemistry in recent years has taken advantage of applying mathe-
matical functions to elucidate the relatedness of these interatomic potentials. This
was verified by plots of interatomic potential energy with reference to the inter-
atomic distance and/or angles. For example:

(i) Coefficients of the Trigonometric Series and the Cosine Power Series,
which are commonly used for bond-torsion energy, were related by
merely applying elementary trigonometric identities [7];

(ii) Coefficients of the Harmonic Angle, Harmonic Cosine, Polynomial
Angle Series and Fourier Series – which are normally applied for
describing bond-bending energy – were connected using Maclaurin
series expansion, elementary trigonometry and elementary calculus [8];
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(iii) Parameters of bond-stretching potentials (e.g. Harmonic, Morse, Poly-
nomial Series, etc) were related using Maclaurin series expansion and
calculus [9];

(iv) Parameters of van der Waals potentials – such as Lennard-Jones (LJ)
and Buckingham potentials – were connected via calculus [10] and
Maclaurin series expansion [11];

(v) Due to significant discrepancies between the Morse and
Murrell-Mottram potentials at large interatomic separation [9], an
improved relationship was obtained which is valid for both small and
large interatomic stretching [12].

(vi) Relationships among 2-body portion of many-body system used in con-
densed matter were obtained mainly by taking multiple derivatives at
the equilibrium interatomic distance [13–20].

The interatomic functions’ relationships listed in (i)–(iv) were reviewed [21]
and a prototype molecular potential function converter was developed in a
spreadsheet format [22]. It is of interest to observe that in several cases the
Maclaurin series expansion is of critical importance [23], particularly in obtain-
ing coefficients of the polynomial forms. Obtaining polynomial forms (of which
harmonic potential is a subset) of pair potentials is highly justifiable on the basis
of the numerous computational chemistry softwares that adopt such functional
forms for describing two-body interactions. These include, in chronological order,
the EAS [24], MM2 [25], CVFF [26], CHARMM [27], GROMOS [28], TRI-
POS [29], MM3 [30], DREIDING [31], COSMIC [32], SHAPES [33], UFF [34],
CFF [35], AMBER [36], MOMEC [37], EFF [38], MMFF [39], MM4 [40] and
OPLS [41] computational chemistry softwares. By extracting polynomial coeffi-
cients from typical potential functions, the obtained coefficients may then be
incorporated into these softwares – thereby enabling greater flexibility and wider
applications.

2. Analysis

Classical potential functions of LJ [42]

ULJ = D

[(
R

r

)12

− 2
(

R

r

)6
]

, (1)

of Morse [43]

UM = D [exp (−2α(r − R)) − 2 exp (−α(r − R))] , (2)
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of Rydberg [44]

URyd = −D
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exp
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(
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(3)

and of Buckingham [45]

UB = A exp (−Br) − C

r6
(4)

were recently connected among one another [46]. In this paper these classical
potentials are converted into polynomial forms by taking advantage of both the
Maclaurin series expansion

exp(z) =
m∑

i = 0

zi

i !
(5)

and the Binomial series expansion

1
(1 + z)p

=
m∑

i = 0

(−p

i

)
zi. (6)

By expressing the ratio

R

r
= 1

(1 + (δr/R))p
, (7)

whereby δr = r − R, in terms of the Binomial series expansion, a polynomial
function for the Lennard-Jones potential can be obtained.

Unlike the Morse potential considered previously [9]

UMorse = D [1 − exp (−α(r − R))]2 , (8)

which is normally adopted in computational chemistry softwares, the functional
form considered in this paper, as furnished in equation (2), is the original ver-
sion that gives (UM)r = R = −D and (UM)r→∞ = 0 instead of (UMorse)r = R = 0
and (UMorse)r→∞ = D respectively. It is clear that UM = UMorse − D, and there-
fore the polynomial form of UM can be easily obtained by subtracting D from
the polynomial form of UMorse [9].

By substituting equation (5) into equations (3) and (4), polynomial forms of
Rydberg and Buckingham potentials can be obtained respectively. Special men-
tion, however, needs to be made for the latter. To simplify the polynomial coeffi-
cients of Buckingham potential function, we let(

∂UB

∂r

)
r = R

= 0 (9)
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Table 1
Dimensionless coefficients for the polynomial forms of typical interatomic potentials.

Coefficients Lennard-Jones Morse Rydberg Buckingham

a0 −1 −1 −1 −1
a1 0 0 0 0
a2 +36 + (αR)2 + 1

2 a2 + 3(BR)−21
1

(
BR

BR−6

)
a3 −252 − (αR)3 − 1

3 a3 − (BR)2−56
1

(
BR

BR−6

)
a4 +1113 + 7

12 (αR)4 + 1
8 a4 + (BR)3−504

4

(
BR

BR−6

)
a5 −3864 − 1

4 (αR)5 − 1
30 a5 − (BR)4−5040

20

(
BR

BR−6

)
a6 +11452 + 31

360 (αR)6 + 1
144 a6 + (BR)5−55440

120

(
BR

BR−6

)

such that the repulsive A and the attractive C coefficients can be related as

(BR) = 6CR−6

Aexp(−BR)
. (10)

Suppose the polynomials of the LJ, Morse, Rydberg and Buckingham were
to be written in the following general form

U = D

m∑
i = 0

ai

(
δr

R

)i

, (11)

then the dimensionless coefficients ai(i = 0, 1, . . . , m) are as listed in Table 1.

3. Results and discussion

In order to provide a graphical verification on the validity of the general-
ized polynomial form of the four potential functions, graphs of dimensionless
potential energy (U/D) versus the dimensionless interatomic distance (r/R) were
plotted. Figures 1 through 4 correspond to plots of (U/D) against (r/R) for the
LJ, Morse, Rydberg and Buckingham potentials respectively. To show the extent
of validity, the even orders of the polynomials (m = 2, 4, 6) were also plotted
based on equation (11) and Table 1. To do so, the non-dimensional terms (αR),
a and (BR) shown in Table 1 need to be assigned numerical values for illustra-
tion purposes. As such, we select

(BR) = 2(αR) =
√

2a = 12, (12)

from previous and present work (e.g. [10,14] and Table 1) in order to provide
reasonably realistic plots. As can be seen in all the four figures, the second-order
polynomials (m = 2, or harmonic forms) give reasonable accuracy at and near
r ∼= R, while fourth-order polynomials (m = 4) result in reasonable correlation
for r/R < 1.1. As expected, the sixth-order polynomials (m = 6) are the best
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Figure 1. Lennard-Jones potential energy with its polynomial forms.

Figure 2. Morse potential energy with its polynomial forms.

among the three polynomial orders considered, as they give numerically valid
agreement up to r/R < 1.15. Apart from enabling polynomial forms of poten-
tial functions to be generated using available parameters from typical interatomic
potentials, Table 1 conversely enables the extraction of typical interatomic poten-
tial functions’ parameters from polynomials functionals obtained by curve-fitting
of experimental data.

4. Conclusions

Knowledge on the interconnection between the typical interatomic poten-
tial functions and their corresponding polynomial forms are relevant in view of
the numerous computational chemistry softwares that adopt polynomial forms
for two-body interactions [24–41]. A method for obtaining polynomial forms
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Figure 3. Rydberg potential energy with its polynomial forms.

Figure 4. Buckingham potential energy with its polynomial forms.

of typical interatomic potential functions – such as LJ, Morse, Rydberg and
Buckingham potentials – has been proposed by using Binomial and Maclaurin
series expansions. Dimensionless coefficients for the polynomials, generated up
to the sixth order, can be used for transforming the above-mentioned potentials’
parameters into polynomial functionals and vice versa.
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